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Abstract—We derive an information theoretic upper bound

on the capacity of a wireless backhaul network modeled as a

classical random extended network, except that we assume the

number of antennas at each base station (BS) also scales up

as an arbitrary function of network size. The antenna scaling is

justified because of the increasing maturity of higher transmission

frequencies which enables us to pack large number of antennas in

small form factors. The main technical arguments are based on

the generalization of geometric exponential stripping technique

of [1] to channel matrices with complex-valued channel gains.

An important consequence of our result is a lower bound on the

number of antennas per BS required for network scalability.

I. INTRODUCTION

Scaling laws provide a useful way to characterize capacity
of large wireless networks. Initiated by Gupta and Kumar’s
seminal work [2], this area received a lot of attention in the
past decade, which significantly improved our understanding
of large wireless networks. Perhaps the most widely known
result is the square-root n law with which the capacity of a
n node network scales [2]. While it was first believed that
this may not be achievable for a random network setting,
Franceschetti et al. [3] closed this gap with an achievable
strategy using percolation theory. Another notable contribution
was by Özgür et al. [4], which demonstrated that linear
scaling with n was possible using hierarchical cooperation. An
interesting dichotomy appeared when Franceschetti et al. [5]
argued that linear scaling is not possible and that square-
root n law is the fundamental limit. This debate was settled
independently by Lee et al. [6] and Özgür et al. [7], where the
main conclusion was that both the earlier results are correct
and that they are applicable in different regimes.

A notable exception in this otherwise well-studied area is
the capacity of multi-antenna wireless networks, especially
where the number of antennas can also scale as some arbitrary
function of total number of nodes n. This regime is quickly
becoming relevant for wireless backhaul in the current cellular
networks. Due to the increasing understanding of propaga-
tion at higher transmission frequencies and push from key
industrial players to go for millimeter-wave communications,
it is now becoming realistic to pack more and more antennas
in small form factors [8], [9]. While there have been some
recent attempts to understand practical considerations for the
design of a multi-antenna backhaul network, e.g., [10], there
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are no known results on the performance limits. In this paper,
we take a step in this direction and derive an information
theoretic upper bound on its capacity by modeling this regime
as a random extended network, where the number of antennas
per node can also scale with the network size. Note that this
antenna scaling assumption, although not mainstream, already
appears in the literature in slightly different contexts. For
instance, [11] studies the capacity of single-antenna ad hoc
networks with infrastructure support, where the number of
antennas per infrastructure BS increases with the network size.

The study of information theoretic bounds for the capacity
scaling of wireless networks was initiated by Xie et al. in [12],
where the main result was restricted to power-law pathloss
exponent ↵ > 6. Two follow-up contributions of particular
interest for this paper are [1], [13], where in [13] Lévêque et
al. derived a useful bound valid for any ↵ > 2, and in [1]
Franceschetti gave an alternate geometric proof for the bound
of [13]. However, both [1], [13] ignored phase rotation in the
channel gains. In this paper, we generalize the geometric ar-
guments of [1] to more general channel models, and derive an
information theoretic upper bound for multi-antenna random
extended networks. An important consequence of this result is
a lower bound on the number of antennas per node required to
make the backhaul network scalable, i.e., to provide non-zero
rate to each source-destination pair independent of n.

II. SYSTEM MODEL

We consider a cellular network where the BS locations
are sampled from a unit density homogeneous Poisson Point
Process (PPP) � ⇢ R2. Note that the results derived in
this paper trivially generalize to any given finite BS density.
For the scaling results, we consider the random extended
network model, and focus our attention on a box Bn with
size

p
n ⇥

p
n [14]. The number of BSs lying in Bn is a

Poisson distributed random variable with mean n. For the fixed
BS density, we are interested in the capacity scaling of the
network formed by BSs inside Bn as n ! 1. It should be
noted that as n ! 1, Bn also grows, eventually encompassing
all the points of �. We assume uniform traffic across Bn. The
source-destination pairs are picked uniformly at random, such
that each BS is the destination of exactly one source BS.

We assume BSs do not have access to wired backhaul. All
the data is communicated over wireless backhaul links sharing
the same spectrum. For the wireless backhaul links, each BS
has  (n) antennas, where  (n) is a non-decreasing function
of n. Scaling the number of antennas with the network size n
may not come naturally to some readers, but it should be noted



that it is not unrealistic, especially with the increasing maturity
of higher transmission frequencies, e.g., at 28 and 38 GHz [8],
which allows to pack more and more antennas in manageable
form factors. For instance, a matchbook-sized prototype of 64
antenna array has already been demonstrated [9]. We further
assume that the physical dimensions (size) of antenna array
does not change with n. Denoting the distance between the
kth antenna of the transmitting BS to the ith antenna of the
receiving BS by dik, the baseband channel gain hik between
these two antennas is

hik =

p
l(dik) exp (j✓ik) , (1)

where l(dik) = min{1, d�↵
ik } is a bounded power-law pathloss

function with exponent ↵ > 2, and ✓ik denotes phase rotation.
For line-of-sight channels, ✓ik =

2⇡dik
� , where � is the trans-

mission wavelength. As will be evident in the next section,
our analysis holds for any given {✓ik}, 1  i, k   (n),
irrespective of their joint distribution. Each node is assumed
to have a maximum power constraint of P watts.

Before concluding this section, we introduce the main met-
ric of interest and the order notation. We denote the network
throughput, i.e., total number of bits successfully transmitted
per second by all nodes in Bn, by T (n). The per source-
destination rate is R(n). The following probabilistic version
of the ordering notation is used [3]. We write f(n) = O(g(n))
with high probability (w.h.p.) if 9 a constant K independent
of n such that limn!1 P(f(n)  Kg(n)) = 1. Similarly,
f(n) = ⌦(g(n)) if g(n) = O(f(n)). In the same spirit, any
general event An is said to occur w.h.p. if limn!1 P(An) =

1. For notational simplicity, the bandwidth is assumed to be
1 Hz, the noise power spectral density to be 1 watts/Hz, and
the information is measures in nats (1 nat = log

2

(e) bits).

III. INFORMATION-THEORETIC UPPER BOUND

In this section, we derive an information-theoretic upper
bound on the network throughput T (n). Note that for a bound
to be information-theoretic, it has to solely depend upon
the physical constraints of the system without making any
assumptions about the transmission strategy. Before going into
the technical details of the upper bound, we state the following
useful result, which follows directly from the Chernoff bound
for Poisson distribution. For the relevant Chernoff bound,
please refer to [3, Appendix II] or [15, Theorem 5.4].

Lemma 1. For a homogeneous PPP � ⇢ Rd with density
�, let N(A) be the number of points in any measurable set
A ⇢ Rd. Denote the Lebesgue measure of A by |A|. We have

lim

|A|!1
P(N(A) > 2�|A|) = 0. (2)

The main idea behind the derivation of this information-
theoretic upper bound is to use the information cut-set bound.
We first partition the box Bn into two equal boxes, each with
side lengths

p
n⇥

p
n/2, as shown in Fig. 1. We will study the

information flow across the common edge of the two boxes,
i.e., this edge acts as a cut. By Lemma 1, it is easy to deduce
that w.h.p. there are less than n points in each box. Since there
are O(n) source-destination pairs that need to transmit across

this cut, the upper bound on the information flow across this
cut also gives an upper bound (in order) for T (n), from which
the upper bound on source-destination rate R(n) will directly
follow. Note further that the information flow across the cut is
upper bounded by the capacity of the effective multiple-input
multiple-output (MIMO) channel, say Cn, with the BSs to the
left of the cut operating as an effective transmitter and the BSs
to the right as a receiver. Since, we are interested in the upper
bound, we assume there are exactly n BSs on either side of
the cut. The n (n)⇥n (n) effective channel matrix, denoted
by H, is given by

H =

2

6664

H
11

H
12

. . . H
1n

H
21

H
22

. . . H
2n

...
...

. . .
...

Hn1 Hn2 . . . Hnn

3

7775
, (3)

where Hik is a  (n) ⇥  (n) channel matrix from kth BS
from the left of the cut to the ith BS to the right of the cut.
Before deriving the actual bound, it is useful to understand
a key property of this matrix, which is especially relevant
for the line-of-sight (LoS) propagation. Recall that assuming
array size and the transmission wavelength to be constants,
the channel rank, more precisely degrees of freedom (DoF),
decrease with the increasing transmitter-receiver separation.
Beyond a certain separation, the channel rank collapses to 1.
For a more formal statement of this result, interested readers
should refer to [6], [7], [16]. As an aside, if we assume each
Hik, 1  i, k  n to be a single rank matrix, following upper
bound on rank(H) can be derived.

Lemma 2 (Rank of a block matrix with rank 1 blocks).
Assuming each Hik, 1  i, k  n to be a single rank matrix,
the rank of H given by (3) is upper bounded by

rank(H)  min{n (n), n2}. (4)

Denoting the basis vector of the column (equivalently row)
space of Hik by vik, (4) holds with equality if 9{vik} such
that dim (span({vik}nk=1

)) = min{n, (n)}, for all i.

Proof. Since Hik is a rank 1 matrix, it can be expressed as

Hik =

⇥
µ
1

vik µ
2

vik . . . µmvik

⇤
, (5)

where vik is a  (n)⇥ 1 basis vector for the column space of
Hik, and {µi} is a set of scalars. It is easy to see that each
column of H can be represented as a linear combination of
the following vectors

uj =

2

6666664

0
...

vik
...
0

3

7777775
1  j  n2, (6)

where k = d j
ne, i = j� (k� 1)n, and 0 is a  (n)⇥ 1 vector

of all 0s. The non-zero entries appear only in the ith block of
uj . Thus, rank(H)  n⇥ n. Also, the rank cannot be larger
than the minimum dimension of the matrix, which implies
rank(H)  n (n), from which the inequality follows.



The condition for the equality of (4) follows from the fact
that if dim (span({vik}nk=1

)) = min{ (n), n}, for all i,
implies dim

⇣
span({uj}n

2

j=1

)

⌘
= min{ (n)n, n2}.

Remark 1. The above result shows that if there is sufficient
randomness in the system, especially in terms of the BS and
antenna locations, and if  (n)  n, rank(H) = n (n),
despite its constituting blocks to be all single rank matrices.
First, this result highlights the importance of cooperation in
LoS propagation. Second, since the capacity of a channel is
directly linked to its rank, more precisely DoF, this result
shows that the bounds derived in this paper are not highly
dependent on the DoF of each individual link. This explains
our choice of general propagation model in (1).

After this slight detour, we now derive an upper bound
on the MIMO channel capacity Cn. Note that the condition
rank(Hik) = 1 above was just an aside for illustrative
purposes and is not assumed in this discussion. Denoting the
transmit symbol covariance matrix by Q, Cn is

Cn = max

Q�0

Tr(Q)nP

log det (I+HQH⇤
)

(a)
 log det (I+ nPHH⇤

)

(b)


n (n)X

i=1

log (1 + nP (HH⇤
)ii) (7)

where H⇤ denotes the conjugate transpose of H, (a) follows
by relaxing the total power constraint, i.e., instead of sharing
nP power across n transmitters, we assume each BS can
transmit at power nP , and (b) follows from the Hadamard
inequality specialized for positive semi-definite matrices [17].
For the ease of argument, we assume that the distances
between any pair of transmit and receive antennas between
kth BS on the left (transmitter) and the ith BS on the right
(receiver) are the same and equal to rik. The main idea now
is to derive tight bounds on (HH⇤

)ii using the geometric
properties of the point process that determine the distances of
BSs from the cut. The bound is based on the tools developed
in [14, Theorem 5.4.4] and [1], where a similar bound is
derived for a single antenna network. Note that the “mirroring
argument” used in [1], [13] to establish equivalence between
singular and eigenvalues of the channel matrix is not directly
applicable in our case due to complex-valued channel gains.
However, as discussed in this section, this only requires a few
technical adjustments in the original proof of [1].

For notational simplicity, we order the BSs on both sides of
the cut by their respective distances from the cut. Further, the
distance of BS i from the cut is denoted by r̂i. To get tighter
bounds for (HH⇤

)ii, we will use the exponential stripping
technique introduced in [1]. As shown in Fig. 1, both the boxes
on the either side of the cut are partitioned into blog

p
n
2

c +
1 vertical strips Si. For 1  i  blog

p
n
2

c, the minimum
distance of the BSs lying in Si from the cut is

p
n

2ei , which
will be used to upper bound (HH⇤

)ii. For i = blog
p
n
2

c+ 1,
i.e., the vertical strip closest to the cut, we will simply upper
bound the path-loss by 1. Denoting the number of BSs in Si

€ 

n
2

€ 

n
2e

€ 

n
2e2

€ 

n
€ 

ˆ r i
€ 

S1

€ 

S3

€ 

S2

€ 

0

Fig. 1. The setup to derive information-theoretic upper bounds. The vertical
strips are denoted by Si, where 1  i  blog

p
n
2 c+ 1.

by X(Si), the following holds w.h.p. 8 i

X(Si)  e
n

ei
, (8)

which directly follows from Lemma 1. From (7), we get

Cn   (n)
log

p
n
2 +1X

i=1

X(Si) log (1 + nP (HH⇤
)ii) (9)

 e (n)

log

p
n
2 +1X

i=1

n

ei
log (1 + nP (HH⇤

)ii) , (10)

where for notational simplicity, we expressed blog
p
n
2

c simply
as log

p
n
2

. Note that this does not compromise our results
because eventually we are interested in the case n ! 1.
Recall that index i in (HH⇤

)ii denotes the vertical strip. This
implicitly represents the diagonal values of HH⇤ correspond-
ing to the BSs located in Si, which will all have the following
common upper bound

(HH⇤
)ii =  (n)

nX

k=1

l(rik)
(a)
  (n)

nX

k=1

l(r̂i) = n (n)l(r̂i)

(b)


(
n (n)r̂�↵

i 1  i  log

p
n
2

n (n) i = log

p
n
2

+ 1

(c)


(
n1�↵

2
 (n)2↵ei↵ 1  i  log

p
n
2

n (n) i = log

p
n
2

+ 1

, (11)

where (a) follows from the fact that r̂i  rik and l(·) is a non-
increasing function, (b) from the fact that for 1  i  log

p
n
2

,
r̂i, which is the distance of the BS lying in Si from the cut,
is lower bounded by

p
n

2ei � 1, which implies l(r̂i) = r̂�↵
i , and

for i = log

p
n
2

+ 1, we simply upper bound l(r̂i) by 1, and
(c) follows by lower bounding r̂i. Substituting (11) in (10)

Cn  e (n)

log

p
n
2X

i=1

n

ei
log

�
1 + Pn2�↵

2
 (n)2↵ei↵

�



+ 2 (n)
p
n log

�
1 + Pn2

 (n)
�
, (12)

where the last term is O( (n)
p
n log(n2

 (n))), which as we
will see is not the bottleneck term. The main goal of the rest
of this section is to find an upper bound on the summation
of the first term. For notational simplicity, define  =

↵
2

�
2� logn (n) and assume it to be positive, which implies that
this derivation is applicable for ↵ > 2 (2 + logn (n)). This
condition will be required for the Taylor expansion of the log
terms. We denote the summation term by C

s

, which is

C
s

=

log

p
n
2X

i=1

n

ei
log

�
1 + Pn2�↵

2
 (n)2↵ei↵

�

=

log

p
n
2X

i=1

n

ei
log

✓
1 + P2

↵ e
i↵

n

◆

=

2
↵ log

p
n
2X

i=1

n

ei
log

✓
1 + P2

↵ e
i↵

n

◆
+

log

p
n
2X

i= 2
↵ log

p
n
2 +1

n

ei
log

✓
1 + P2

↵ e
i↵

n

◆
= C

s1 + C
s2 . (13)

Since the constant P2

↵ in the log terms of both C
s1 and C

s2

is independent of n and hence does not impact scaling of
these terms, we will ignore it in the following discussion for
notational simplicity. Using Taylor series expansion for log

term, C
s1 can now be expressed as

C
s1 =

2
↵ log

p
n
2X

i=1

n

ei

1X

k=1

(�1)

k+1

k

eki↵

nk

= n

1X

k=1

(�1)

k+1

k

1

nk

2
↵ log

p
n
2X

i=1

ei(k↵�1). (14)

The summation with respect to i can be computed as
2
↵ log

p
n
2X

i=1

ei(k↵�1)

=

ek↵�1

ek↵�1 � 1

✓
n(k↵�1)/↵

2

2(k↵�1)/↵
� 1

◆

(a)
 m

✓
n(k↵�1)/↵

2

2(k↵�1)/↵
� 1

◆
, (15)

where (a) follows by the fact that ek↵�1

ek↵�1�1

is uniformly upper
bounded by some positive constant m. Substituting (15) back
in (14), we get

C
s1  n

1X

k=1

(�1)

k+1

k

1

nk
m

✓⇣n
4

⌘
(k↵�1)/↵

� 1

◆

= C
s11 + C

s12 . (16)

Ignoring again the constants, C
s11 can be upper bounded as

C
s11 = n1� 

↵

1X

k=1

(�1)

k+1

k
= n1� 

↵
log 2 = O(n1� 

↵
). (17)

Similarly, C
s12 can be upper bounded as C

s12 =

n

1X

k=1

(�1)

k+1

k

1

nk
= n log(1 + n�

) = O(n1�
). (18)

Substituting (17) and (18) back in (16), we get

C
s1  O(n1� 

↵
) +O(n1�

) = O(n1� 
↵
), (19)

where the last equality follows from the fact that ↵ > 2. We
now turn our attention to C

s2 in (13), where we again ignore
the constants. It can be expressed as

C
s2 =

log

p
n
2X

i= 2
↵ log

p
n
2 +1

n

ei
log

✓
1 +

ei↵

n

◆

=

X n

ei
log

✓
ei↵ · 1

n
·
✓
1 +

n

ei↵

◆◆

=

X n↵i

ei
�
X n

ei
log n+

X n

ei
log

✓
1 +

n

ei↵

◆

= C
s21 � C

s22 + C
s23 , (20)

where the limits of the summation for all the terms are the
same as the first equation. We now look at the three terms
separately starting with C

s21

C
s21 = n↵

log

p
n
2X

i= 2
↵ log

p
n
2 +1

i

ei

(a)
 O(

p
n) +O

�
n1� 

↵
�

(b)
= O

�
n1� 

↵
�
, (21)

where (a) follows by computing the summation directly, and
(b) from the fact that 

↵ =

1

2

� 1

↵ (2 + logn (n))  1

2

.
Similarly, the second term can be expressed as

C
s22 = n log(n)

log

p
n
2X

i= 2
↵ log

p
n
2 +1

e�i
(a)
 O(

p
n log(n))+

O
�
n1� 

↵
log(n)

�
= O

�
n1� 

↵
log(n)

�
, (22)

where (a) again follows by computing the summation directly
and the final result by the fact that  < ↵

2

. Now we come to
the final term C

s23 , which can be expressed in terms of the
Taylor series, log(1 + x) =

P1
k=1

(�1)

k+1

k xk, |x|  1, as

C
s23 = n

log

p
n
2X

i= 2
↵ log

p
n
2 +1

1

ei
log

✓
1 +

n

ei↵

◆

= n

1X

k=1

(�1)

k+1

k
nk

log

p
n
2X

i= 2
↵ log

p
n
2 +1

1

ei(k↵+1)

. (23)

The summation with respect to i can be expressed as

e�k↵�1

1� e�k↵�1

1

e
k↵+1

↵ 2 log

p
n
2


1� ek↵+1

e(k↵+1)

(

1� 2
↵ )

log

p
n
2

�

=

e�k↵�1

1� e�k↵�1

✓
4

n

◆k+ 
↵

� 1

1� e�k↵�1

✓
4

n

◆↵k+1
2

. (24)

Using the fact that both e�k↵�1

1�e�k↵�1 and 1

1�e�k↵�1 are upper
bounded uniformly by positive constants, and ignoring the



constants that do not impact scaling, C
s23 can be upper

bounded by the sum of the following two terms

C
s231 = n1� 

↵

1X

k=1

(�1)

k+1

k
= n1� 

↵
log 2 = O

�
n1� 

↵
�

(25)

C
s232 =

p
n

1X

k=1

(�1)

k+1

k
n(�↵

2 )k (a)
=

p
n log(1 + n�↵

2
)

= O

✓ p
n

n
↵
2 �

◆
= O(

p
n), (26)

where (a) follows from the fact that since  � ↵
2

= �2 �
logn (n) < 0, nk(�↵

2 ) < 1, followed by using the appro-
priate Taylor series expansion. Combining these two results,
we get the following upper bound on C

s23

C
s23  O

�
n1� 

↵
�
+O(

p
n) = O

�
n1� 

↵
�
. (27)

Substituting (21), (22) and (27) in (20), C
s2 is

C
s2 = C

s21 � C
s22 + C

s23  O
�
n1� 

↵
�
+O

�
n1� 

↵
log(n)

�

+O
�
n1� 

↵
�
= O

�
n1� 

↵
log(n)

�
. (28)

Now combining (19) and (28), C
s

can be upper bounded as

C
s

= C
s1 + C

s2 = O(n1� 
↵
) +O

�
n1� 

↵
log(n)

�

= O
�
n1� 

↵
log(n)

�
, (29)

which when substituted back to (12) completes the proof of
the following main result of this paper.

Theorem 1. For path-loss exponent ↵ > 2 (2 + logn (n))

T (n) = O
⇣p

nn
2
↵
 (n)1+

1
↵
log n

⌘
. (30)

Remark 2 (Price for generality). Under a simplified channel
model with real channel gains and  (n) = 1, the information
theoretic bound of [1], [13] is T (n) = O(n

1
2+

1
↵
log n).

Putting  (n) = 1 in Theorem 1, we get T (n) =

O(n
1
2+

2
↵
log n), which although slightly weaker, is derived

under more accurate propagation conditions.

Remark 3 (Scalability). From Theorem 1, it is easy to check
that for linear capacity scaling in n, we need  (n) =

⌦(

h
n

1
2�

2
↵
(log n)�1

i ↵
1+↵

), which is meaningful for ↵ > 4.
In particular, for high attenuation regime, we need to scale
antennas almost as

p
n to make our network scalable. In fact,

in [18],  (n) =
p
n is shown to achieve scalability for any

↵ > 2 in LoS MIMO networks under slightly different BS
placement model, showing that there exists a regime of BS
physical sizes, inter-BS distances, and high frequency, where
a scalable wireless backhaul can be effectively implemented
with short hops, each achieving high MIMO multiplexing gain.

IV. CONCLUSIONS

Wireless backhaul for current cellular networks is quickly
becoming a necessity, especially in the context of urban
small cell deployments. Two likely features of future backhaul
networks are: (i) higher transmission frequencies, e.g., mil-
limeter wave, and consequently, (ii) large number of transmit

antennas. We modeled this network as a multi-antenna random
extended network, where the number of antennas per BS
can scale as some arbitrary function of the total number of
BSs. Using geometric arguments, we derived an information
theoretic upper bound on the capacity of this network. As a
consequence, we also get a lower bound on the scaling of
antennas required to make a backhaul network scalable.

Since the formal study of backhaul networks has just begun,
there are numerous extensions possible for this work. For
instance, it is important to include legacy BSs in the analysis
that may additionally have fixed capacity wired backhaul. It
is also important to study the performance of various practical
multi-hop strategies in the context of capacity scaling.
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