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Abstract—When the Global Positioning System is unavailable,
cellular networks become the dominant vehicle for positioning.
However, no tractable approach exists for gaining general insights
into localization performance in such networks. Instead, analysis
is often done using deterministic network models or with complex
system-level simulations, resulting in highly context-specific in-
sights, which do not translate well to random network topologies.
In this paper, we motivate and introduce a new approach for
analyzing localization performance in cellular networks using
tools from point process theory and stochastic geometry. After
presenting the model, easy-to-use expressions are derived for the
distributions of base station hearability, a metric which is closely-
related to localization performance, with and without base station
coordination.

Index Terms—Localization, cellular networks, hearability,
stochastic geometry, Poisson point processes.

I. INTRODUCTION

HE STUDY OF LOCALIZATION in cellular networks

has been around for many years [1], [2]. The driving
force behind much of the research is a mandate by the Federal
Communications Commission requiring cellular network op-
erators to locate those calling 911 to within certain accuracy
requirements [3]. Until recently, these requirements included
only outdoor location accuracies. Accordingly, the predominant
way cellular network operators have met the requirements of
the mandate is by relying on the Global Positioning System
(GPS). In January of 2015, the FCC expanded its mandate to
include a phase-in of indoor positioning requirements, citing
that the bulk of emergency calls now originate indoors [4].
While GPS is reliably available under clear sky conditions,
where it provides accurate outdoor positioning, its availability
suffers greatly in both urban canyons and indoor scenarios.
In these situations, the dominant vehicle for positioning is a
fallback to cellular network localization. Presently, however,
no approaches exist to analyze the fundamentals of localization
performance in such networks. In this paper, we present a
new analytical model exploiting concepts from point process
theory [S5] and stochastic geometry [6] that lends tractability
to the study of cellular network localization. Using this model,
we derive easy-to-use expressions which provide insight into
localization performance with and without base station (BS)
coordination.

A. Prior Art and Motivation

In large part, the lack of a tractable analytical model is due
to the fact that BS locations are the result of a very complicated
optimization problem which is difficult to model and depends

The authors are with the Mobile and Portable Radio Research Group
(MPRG), Wireless@ Virginia Tech, Blacksburg, VA, USA. E-Mail: {javier,
hdhillon, buehrer} @vt.edu.

upon various system parameters. Broadly speaking, BSs are
deployed in locations so as to maximize coverage and rate
for communication purposes, yet the actual placements are
further subject to topographical limitations. Moreover, the BS
deployments which optimize communication goals may not
be sympathetic to localization goals, potentially resulting in
highly suboptimal geolocation systems. Consider that in com-
munication systems, it is ideal for a mobile device to receive a
strong signal from its serving BS and weak signals from all its
neighbors, whereas localization is not possible unless a mobile
device receives usable signals from these neighbors, with
accuracy generally improving as more neighbors are heard. To
underscore the conflicting nature of the two goals, the need to
cater to localization demands has a name among cellular system
designers, who refer to it as the hearability problem, due to the
fact that increasing hearability from neighboring cells for the
purposes of positioning is contrary to the principles of cellular
system design [7]. Despite this, the localization literature often
presents results using specific device and network layouts,
which are typically favorable to location estimation (such as by
forcing the device to be localized inside the convex hull of its
anchors), but do not necessarily represent what may generally
be encountered in cellular networks. Even when the device
location is not fixed, but the network is, such as when modeling
cellular networks using the popular hexagonal grid model [8],
analytical results are difficult to come by. Instead, network
designers resort to complex system-level simulations, as is
clear from the 3GPP standardization process [9]. Unfortunately,
simulation approaches do not typically allow general insights to
be obtained, such as how localization is impacted by network
design parameters. This motivates the need for tractable
analytical models that will provide preliminary design insights
and will either circumvent the need for simulations completely
or limit the ranges of the simulation parameters.

B. Contributions

In order to provide a tractable analytical model, we turn
to point process theory and stochastic geometry to study the
geolocation problem. These tools have been applied in wireless
contexts before [10]. In fact, both cellular and ad-hoc networks
have been studied using tools from stochastic geometry, with
ad-hoc networks being the subject of most of the classical
works. Recently, however, tools from stochastic geometry have
been increasingly applied to the study of cellular networks [11]
and emerging heterogeneous networks [12]. Motivated by these
advances, we present a new approach catered to the operation
of localization systems and provide analytical expressions for
BS hearability with and without BS coordination.



II. SYSTEM MODEL
A. Spatial base station layout

The locations of the BSs are modeled using a homogeneous
PPP ® € R? with density A [6]. Due to the stationarity of a
homogeneous PPP, the device to be localized is assumed to be
located at the origin o. If the interference is treated as noise
at the receiver, the most appropriate metric that captures link
quality is the signal-to-interference-plus-noise ratio (SINR).
For the link from some BS = € ® to the origin, the SINR can
be expressed as:
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where P is the transmit power, S, denotes the independent
shadowing affecting the signal from BS z to the origin, o > 2
is the pathloss exponent, and o is the noise variance. Note
that (1) represents the SINR prior to any processing gain, yet
as will be evident in the sequel, positioning systems typically
have to work at lower target SINRs, thereby necessitating the
need for some form of processing gain. In general, the post-
processing SINR will include some multiplicative factor -y
representing the processing gain, which depends upon system
parameters (e.g. integration time) and is assumed to average
out the effect of small scale fading. This is the reason why the
SINR expression in (1) does not contain a fast fading term,
which is consistent with current models for evaluating cellular
positioning performance [8].

B. Selection of participating base stations

As is common in communication system analyses, serving
BSs are selected according to the strongest BS association
policy, measured using average signal strength, which typically
includes long time-scale effects such as shadowing and pathloss.
Now, consider that we desire to use a total of L BSs for
positioning. Thus, we assume that the L BSs which provide
the highest average received power make up the set of
participating BSs. Their successful participation, however, is
not guaranteed as there is some post-processing SINR threshold
B (or equivalently, pre-processing SINR threshold /5/v) above
which the signals from the participating BSs must arrive in
order for them to successfully contribute to the localization
procedure. In the absence of shadowing, the set of potential
BSs simply corresponds to the set of the L nearest BSs.
When shadowing is considered and BSs are selected according
to average signal strength, the effect of shadowing may be
absorbed as a perturbation in the locations of the BSs provided
that the fractional moment E |S2/®| < oo [13], [14]. Thus,
when this condition is fulfilled and without loss of generality,
we define a new equivalent PPP with density \ E S? /o
doing so, we ensure that the strongest BS association policy
in the original PPP is equivalent to the nearest BS association
policy in the transformed PPP. For notational simplicity, we
will continue to represent the transformed PPP by & with
density A, under the assumption that if shadowing is present, it
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Fig. 1. THE PROPOSED MODEL. The mobile device is denoted by the central
square and BSs are denoted by the circles. The BSs participating in the
localization procedure (within the gray annular region .A) are either all on or
all off during the L™ BS’s transmission, depending on the coordination.

is already reflected in the density of ®. Note that the condition
on the fractional moment is fairly mild and will almost always
be satisfied by the distributions of interest, including the most
common assumption of log-normal shadowing with finite mean
and standard deviation [14]. As a final note, it has been shown
that for SINR, shadowing causes even more regular network
models, such as the common hexagonal lattice, to behave like
a PPP model [15], [16]. This further validates the use of a PPP
to model BS locations.

C. Base station coordination

In cellular networks, backhaul connections allow for the
coordination of transmissions between BSs during localization
procedures. An example of this technique for improving the
hearability of far away BSs is that of joint scheduling in LTE [7].
For simplicity of exposition, let us order the BSs in the now
shadowing-transformed @ in terms of increasing distance from
the origin such that the location of the k™ farthest BS from the
origin is denoted by z;, € ®. We now enrich the previous SINR
expression in (1) for the signals arriving from the participating
BSs (i.e., zy for k € {1,..., L}) by including BS coordination:
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where Lyc is an indicator taking value unity when there is no
coordination between BSs. Note that SINR, is a function of L
because of the potential coordination among the L participating

BSs.

D. Base station range distributions

From (2), it is clear the SINRs are dependent on the distances
of the BSs from the origin, rather than their exact locations.
Thus, it is worthwhile to characterize these. Denote the distance
of the k™ BS from the origin by Ry, = ||zx| as illustrated in



Figure 1 for the closest and Lth closest BSs. The distribution

of Ry, is known to be [17]:
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Now, conditioned on the location (or distance) of the L™ BS,

we present a useful lemma for understanding the distribution
of the L — 1 closest BSs.
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Lemma 1. Conditioned on the location of the L™ BS, the
L — 1 BSs closer to the origin are distributed according to
a binomial point process (BPP) (i.e., in a uniformly random
manner) inside the circle of radius Ry, centered at the origin.

Proof. See Appendix A. ]

Using Lemma 1, we arrive at the following distribution for the
most dominant (i.e., closest) interferer, given the distance of
the L™ BS. This is formally presented below.

Lemma 2. The cumulative distribution function of the closest
BS distance Ry given Ry is
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Proof. See Appendix B. ]

Let A = b(o, Ry)\b(o, R1), where b(8,r) represents a ball
of radius r centered at 8. We have the following lemma char-
acterizing the distribution of the L — 2 remaining participating
BSs in this annular region shown in Figure 1.

Lemma 3. Conditioned on Ry and Ry, the L — 2 BSs located
inside the annular region b(o, Ry)\b(o, Ry) are distributed
according to a BPP.

Proof. See Appendix A. ]

III. LOCALIZATION PERFORMANCE

Regardless of the technique, cellular geolocation performance
fundamentally depends upon three things: (i) the geometry of
the participating BSs relative to the device being localized,
(ii) the number of participating BSs, and (iii) the accuracy of
the positioning observations. These three factors are all highly
interdependent. For instance, both the number of BSs whose
signals arrive with sufficiently-high SINRs to participate in
the localization procedure and the quality of their positioning
observations are strongly dependent on the interference field,
which is itself driven by the realized network geometry. Thus, a
full characterization of localization performance would take into
account all possible geometric conditionings of the BSs, a task
which is extremely difficult. However, by taking into account
even just the number of participating BSs, valuable insights into
localization performance may be gleaned. In the present work,
we focus on the case of o = 4 in interference-limited networks,
which is commonly of interest in the cellular communication
literature. Note that using o = 4 allows us to obtain simplified
analytical expressions, while remaining close to the pathloss
exponent of 3.76 accepted for 3GPP simulations [8]. For more
general pathloss exponents, the reader is referred to [18].
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Fig. 2. RELATIONSHIP BETWEEN LOCALIZATION ACCURACY AND BS

PARTICIPATION: Ranges of the lower 95" percentiles of positioning accuracies
using TDOA positioning. (No BS coordination, « = 4, 8/~ = —16 dB, and
8 dB shadowing standard deviation.)
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Fig. 3. DECREASING AVAILABILITY OF BSS: A histogram illustrating the
decreasing probability of attaining an increasing number of successful BS
connections. (The setup is identical to that of Figure 2.)

A. Base station participation and geolocation performance

A clear relationship exists between the number of BSs
involved in positioning and the distribution of the resulting
localization accuracy. In order to see this, consider the Cramér-
Rao lower bound (CRLB), which provides a lower bound on
the achievable performance of an unbiased estimator, applied
to time-difference-of-arrival (TDOA) positioning, commonly
employed in cellular localization (e.g., observed time-difference-
of-arrival, OTDOA, in LTE). Using the model described in the
previous section with a BS deployment density equivalent
to that of an infinite hexagonal grid with 500m intersite
distances and a shadowing standard deviation of 8 dB, a
localization system without BS coordination was simulated
requiring 8 = —6 dB for successful signal detection after a
processing gain of v = 10 dB. The threshold 5 determines
which BSs may successfully participate in the localization
procedure, while the BSs’ exact SINRs determine the accuracies



of their individual ranging observations, calculated using the
well-known TOA ranging CRLB [19] with an assumed signal
bandwidth of 2 MHz. Lastly, as is typical, the strongest BS is
selected as the reference BS for TDOA. From Figure 2, which
plots the range of the lower 95" percentiles of the achievable
root-mean-square (RMS) positioning errors observed in the
simulation versus the number of successfully participating
BSs, we see that not only does the achievable localization
performance generally improve with an increasing number of
BSs, it starts to become almost predictable. Motivated by this
trend, we now formally propose a metric to study the number of
BSs able to successfully participate in a localization procedure
for a given target SINR [ and processing gain ~.

Definition 1 (Participation metric). For a given BS deployment
¢ € D, let Y represent the maximum number of BSs capable
of successfully participating in a localization procedure. This
can be mathematically defined as:
: 8
T = arg max /- H 1 (SINRk(ﬁ) > ) . %)
1 kel y
Note that this metric differs from a traditional metric such
as the CRLB in that it is not directly tied to a specific
positioning accuracy value since it does not take into account
geometry, though the above analysis shows that it is certainly
related to performance. Its advantage lies in its tractability for
random geometries, whereas the CRLB is easily derived for
deterministic geometries, but quickly becomes intractable to
characterize for random network geometries.

B. Participation from a desired number of base stations

Figure 3 plots the probabilities of attaining some desired
number of successful BS connections as observed through the
simulation. While generally better localization performance
can be attained by increasing BS participation, it is clear from
Figure 3 that the probability of successfully involving more
BSs decreases sharply as the number of BSs increases. Thus, it
is desirable to understand exactly how the participation metric
T is impacted by network design parameters.

Definition 2 (L-localizability probability). For a given ¢ € &,
a mobile device is said to be L-localizable if at least L BSs
may successfully participate in the localization procedure. The
probability of this occurring is simply:

PL—P(T>L). ©)

Note that for L = 1, this simply gives the downlink coverage
probability.

When the small scale fading is averaged out, as is the case in
the proposed model described in Section II, it is straightforward
to infer from (2) that 1 (SINRy (L) > ) > 1 (SINRy(L) > 5)
for all k£ <[ < L. This simply means that the received SINR
from a BS farther from the mobile device is lower than that of
a closer BS, meaning that the probability of L-localizability
can be equivalently expressed as

PL = Eo [1 (SINRL(L) = B)]. (7

C. Probability of L-localizability

For the si%nal arriving from the L™ participating BS (L > 1),
let Z; = Ei:_; P||z;|| = be the (potential) interference from
the other participating BSs excluding the closest BS (for reasons
which will be evident later) and Zo = Zj‘; 41 Pllzg|l=
be the interference from BSs beyond the L™ one. We now
consider an approximation of P when 1nc = 1, i.e., without
BS coordination, by considering the means of Z; and 7,
conditioned on R; and Ry, rather than Z; and Z5 themselves.
These are characterized in the following lemmas.

Lemma 4. The expected value of T, conditioned on R, and
Ry is

2P(L—2) R} ®—-Ri™®
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Proof. See Appendix C. |

Lemma 5. The expected value of I, conditioned on Ry, is
E[T2|Ry] = ZP_”;R?% ©)

for a > 2, and unbounded otherwise.

Proof. See Appendix D. |

Since cellular networks are typically limited by interference
rather than thermal noise, we remove the thermal noise
term, and apply Lemmas 4 and 5 to obtain the following
approximation for Py.

Theorem 1 (No base station coordination). When all BSs
transmit simultaneously, the probability of L-localizability may
be approximated as

\/m
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0
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Proof. See Appendix E. |

Next, we consider the cellular localization scenario when
Ine = 0, ie., with perfect BS coordination, by again
considering the conditional mean of Z,. In this case, Lemma 5
may be employed to obtain a simple approximation of Py.

Theorem 2 (Perfect base station coordination). When all BSs
transmit sequentially and remain quiet during the other BSs’
transmissions, Py, may be approximated as

L-1 (1)2
PL(L.B 7 N) =1 =) e 7l (11)
£=0 ’

Proof. Following a similar derivation to (10), but excluding
the interference from the other L — 1 participating BSs,
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Fig. 4. ACCURACY OF THE APPROXIMATION: This figure illustrates both the
true localizability probabilities (solid line) as well as those provided by the
approximation (dashed line) for L=4. Note that the approximation is nearly
indistinguishable from truth and requires only a simple analytical evaluation.

which is simply the probability of finding at least L nodes
inside b (o7 v/ Z!f) [ ]
One interesting remark here is that with perfect BS coordi-

nation, the density of the BS deployment does not appear to
affect Pr.

IV. NUMERICAL VERIFICATION

We now verify the accuracy of the approximations by com-
paring with the true Py, gathered using 10,000 random network
realizations. In Figure 4, both approximations are plotted for
L = 4, the minimum number of BSs required for unambiguous
TDOA positioning. We observe that the approximations are
remarkably tight, being nearly indistinguishable from truth
except in the low-reliability regime (P, < 0.4), which is not
very desirable for system design anyway. A key factor enabling
these tight approximations is that the locations of the strongest
BS (i.e., the dominant interferer) and the L™ BS are considered
exactly. To appreciate the value of the tight approximations,
consider the exact expression for the k-coverage problem in
the absence of fast fading in [20, Corr. 7], which applies
here to Py with no BS coordination. A cursory glance at the
expression reveals its cumbersome nature, involving many
multi-fold integrals, from which it is extremely difficult to gain
general insights.

V. CONCLUSION

We have introduced concepts from point process theory and
stochastic geometry to increase the tractability of localiza-
tion performance analyses in random networks, which may
encompass cellular networks as well as WiFi access point
deployments. This is in contrast to most previous approaches,
which are either specific to deterministic deployments or rely
on time-consuming simulations. Furthermore, the value of
the model was demonstrated through tight approximations of

network hearability which make evident the effects of individual
network parameters on localization performance.

APPENDIX
A. Proof of Lemmas 1 and 3

Leti < j,n < &, E be the number of BSs between x; and x;,
A = b(o, [lz;]| + da/2)\b(o, ||lzi|| — da/2), B = b(o, [|z;]| +
db/2)\b(o, [|z;|| —db/2), C = b(o, ||lz;| — db/2)\b(o, ||z:]| +
da/2), D C C, b(0,r) represent a ball of radius r centered
at 0, and Ny be the number of points in region 7. Then,

P(Np = n|z;, x;)
— lim P(Np=n|Noc=ENp=1N4=1)

da,db—0
i [P(ND:n,NC:E,NB:LNA:l)
= lim
da,db—0 P(Ne =E,Ng=1,Ns=1)

[P(ND :n,NC\D :E—’I’L,NB = 1,NA = 1)
da.dbs0 P(Nc =5,Ng =1,N, = 1)
[P(ND :TL)[P(Nc\D :E—n)

P(N¢ = E)
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which shows that the = BSs inside the annular region
limda’dbg)oc = |b(0, ||.%'J||)\|b(07 ||$ZH) make up a BPP. By
letting i = 0, j = L, and defining zo £ o (i.e., ||zo|| = 0), the
BSs inside the circular region b(o, ||z1||) are shown to make
up a BPP, thus proving Lemma 1. By letting 1 = 1 and j = L,
Lemma 3 is proved.

B. Proof of Lemma 2
FRl\RL(r|RL) = [P(Rl < ’I‘|RL) =1- [P(R1 > T|RL)
=1-=Pmin({z : lz|| <l[lzzl}) > r[RL)
(a)
=1- I Pl >rlRe)

[1

{z:llz||<|lzz I}
where (a) follows from Lemma 3.

C. Proof of Lemma 4
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Let x be one of the BSs between x; and x; in distance
_ 2P /RL eag,— 2P 2o
R -’ Jp, B-R\2-a
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from the origin. Then
Rr
T—R1>
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where (a) follows from Lemma 3. Lastly, the mean of the sum
of the interference from all interferers is simply the sum of
their individual means, from which the result follows.
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D. Proof of Lemma 5

E[Zy|R;] = E

D

z€P\b(o,RL)

27 0o
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[bC(O RL) Ry,
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for o > 2, and unbounded otherwise.

E. Proof of Theorem 1

Let 02 = 0, and evaluate at o = 4.
PL(Laﬂ7fy, )‘) = [P(SINRL 2 7_15)
=Eg, [Er, [L(SINRL >~7'8|R1, R)|RL]]  (13)
The SINR, term in the above expression is
P —Q
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where (a) follows by defining X =
Using (14), we now simplify SINR; > =13 that will then
used to derive PL(L, 3,v,)) in (13). Defining Y = X2 we
have

SINR, >~ 189 y2 4 (L —2)y <x?
L—2)

:><Y+(LQ_2))2§/<51+( 1

o, =22 (L-2)
K™+ 1 - 5
(L—-2)2 (L-2)
42
(L—-2)* (L-2)
4 2

=1<XL kL +

R
= L <R, <Ry

_ (L—2)2 2)2 (L—2)
\/ 1 + — 5

where k7! = /8 — 7AR? in (a), (b) follows from the fact
that Y > 1, and (c) from Y = X2. Note that (b) and (c)
(& 42> Step (d) follows from X > 1. The
! is replaced by a more strict condition

require £~ > —
earlier condition on K~

R
7= and substituting o = 4.

k=1 > L —1in (d). Substituting this back in (13) and doing
some algebraic manipulations, we get

R2 _ Ri L=t

L L—2)2 L—2
YRR

R

PL(L767’77 )\) = [ERL

L—-1

:ERL

\/v/ﬁfﬂR%Jr%*@

from which the result follows by simply integrating across the
density of Ry. Due to k! > L — 1 the integration limits are

v/B—(L—1)
TA

from 0 to . This completes the proof.
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